Computational Phenotype Discovery Using Unsupervised Feature Learning over Noisy, Sparse, and Irregular Clinical Data

نویسندگان

  • Thomas A. Lasko
  • Joshua C. Denny
  • Mia A. Levy
چکیده

Inferring precise phenotypic patterns from population-scale clinical data is a core computational task in the development of precision, personalized medicine. The traditional approach uses supervised learning, in which an expert designates which patterns to look for (by specifying the learning task and the class labels), and where to look for them (by specifying the input variables). While appropriate for individual tasks, this approach scales poorly and misses the patterns that we don't think to look for. Unsupervised feature learning overcomes these limitations by identifying patterns (or features) that collectively form a compact and expressive representation of the source data, with no need for expert input or labeled examples. Its rising popularity is driven by new deep learning methods, which have produced high-profile successes on difficult standardized problems of object recognition in images. Here we introduce its use for phenotype discovery in clinical data. This use is challenging because the largest source of clinical data - Electronic Medical Records - typically contains noisy, sparse, and irregularly timed observations, rendering them poor substrates for deep learning methods. Our approach couples dirty clinical data to deep learning architecture via longitudinal probability densities inferred using Gaussian process regression. From episodic, longitudinal sequences of serum uric acid measurements in 4368 individuals we produced continuous phenotypic features that suggest multiple population subtypes, and that accurately distinguished (0.97 AUC) the uric-acid signatures of gout vs. acute leukemia despite not being optimized for the task. The unsupervised features were as accurate as gold-standard features engineered by an expert with complete knowledge of the domain, the classification task, and the class labels. Our findings demonstrate the potential for achieving computational phenotype discovery at population scale. We expect such data-driven phenotypes to expose unknown disease variants and subtypes and to provide rich targets for genetic association studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gradient-based Laplacian Feature Selection

Analysis of high dimensional noisy data is of essence across a variety of research fields. Feature selection techniques are designed to find the relevant feature subset that can facilitate classification or pattern detection. Traditional (supervised) feature selection methods utilize label information to guide the identification of relevant feature subsets. In this paper, however, we consider t...

متن کامل

Bio-Inspired Spiking Convolutional Network using Layer-wise Sparse Coding and STDP Learning

Hierarchical feature discovery using non-spiking convolutional neural networks (CNNs) has attracted much recent interest in machine learning and computer vision. However, it is still not well understood how to create spiking deep networks with multi-layer, unsupervised learning. One advantage of spiking CNNs is their bio-realism. Another advantage is that they represent information using sparse...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Fused Feature Representation Discovery for High-Dimensional and Sparse Data

The automatic discovery of a significant low-dimensional feature representation from a given data set is a fundamental problem in machine learning. This paper focuses specifically on the development of the feature representation discovery methods appropriate for high-dimensional and sparse data. We formulate our feature representation discovery problem as a variant of the semi-supervised learni...

متن کامل

Labeling the Features Not the Samples: Efficient Video Classification with Minimal Supervision

Feature selection is essential for effective visual recognition. We propose an efficient joint classifier learning and feature selection method that discovers sparse, compact representations of input features from a vast sea of candidates, with an almost unsupervised formulation. Our method requires only the following knowledge, which we call the feature sign—whether or not a particular feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013